If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(g^2)+40g=0
a = 1; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·1·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*1}=\frac{-80}{2} =-40 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*1}=\frac{0}{2} =0 $
| 100-20h=-h^2 | | x^2-9x-62=0 | | q2+ 9=12 | | ×=4/13x/5 | | 21x-1=18x+1 | | m8+13=37 | | 2x-1=18x+1 | | -2y-25=19 | | Nx3=12+N | | 8q=q^2-7 | | 4v^2+24v+11=0 | | (42z^2)+19z=0 | | (5n^2)+14n+8=0 | | (x-9)+(x+5)=168 | | (x-9)(x+5)=168 | | -8(2y+2)=0 | | -4(-r+2)=4 | | (13u^2)+43u=0 | | (28y^2)+5y=0 | | -5(-3k-2)=-65 | | (u^2)-17u-18=0 | | (z^2)-11z+10=0 | | 2x4−166x2=−324x= | | 4x-33=-15 | | (25p^2)-38p=0 | | (h^2)-33h=0 | | 18+0.12x=9+0.17x | | (k^2)+12k=0 | | (x^2)+21x+20=0 | | (p^2)+6p+9=0 | | 2x−4=x+1 | | 5^3-10^2=x(8-2)+2x=3x |